217 research outputs found

    Atmospheric tar balls: aged primary droplets from biomass burning?

    Get PDF
    Atmospheric tar balls are particles of special morphology and composition that are fairly abundant in the plumes of biomass smoke. These particles form a specific subset of brown carbon (BrC) which has been shown to play a significant role in atmospheric shortwave absorption and, by extension, climate forcing. Here we suggest that tar balls are produced by the direct emission of liquid tar droplets followed by heat transformation upon biomass burning. For the first time in atmospheric chemistry we generated tar-ball particles from liquid tar obtained previously by dry distillation of wood in an all-glass apparatus in the laboratory with the total exclusion of flame processes. The particles were perfectly spherical with a mean optical diameter of 300 nm, refractory, externally mixed, and homogeneous in the contrast of the transmission electron microscopy (TEM) images. They lacked any graphene-like microstructure and exhibited a mean carbon-to-oxygen ratio of 10. All of the observed characteristics of laboratory-generated particles were very similar to those reported for atmospheric tar-ball particles in the literature, strongly supporting our hypothesis regarding the formation mechanism of atmospheric tar-ball particles

    Competitive percolation strategies for network recovery

    Full text link
    Restoring operation of critical infrastructure systems after catastrophic events is an important issue, inspiring work in multiple fields, including network science, civil engineering, and operations research. We consider the problem of finding the optimal order of repairing elements in power grids and similar infrastructure. Most existing methods either only consider system network structure, potentially ignoring important features, or incorporate component level details leading to complex optimization problems with limited scalability. We aim to narrow the gap between the two approaches. Analyzing realistic recovery strategies, we identify over- and undersupply penalties of commodities as primary contributions to reconstruction cost, and we demonstrate traditional network science methods, which maximize the largest connected component, are cost inefficient. We propose a novel competitive percolation recovery model accounting for node demand and supply, and network structure. Our model well approximates realistic recovery strategies, suppressing growth of the largest connected component through a process analogous to explosive percolation. Using synthetic power grids, we investigate the effect of network characteristics on recovery process efficiency. We learn that high structural redundancy enables reduced total cost and faster recovery, however, requires more information at each recovery step. We also confirm that decentralized supply in networks generally benefits recovery efforts.Comment: 14 pages, 6 figure

    Synaptic and cellular changes induced by the schizophrenia susceptibility gene G72 are rescued by N-acetylcysteine treatment

    Get PDF
    Genetic studies have linked the primate-specific gene locus G72 to the development of schizophrenia and bipolar disorder. Transgenic mice carrying the entire gene locus express G72 mRNA in dentate gyrus (DG) and entorhinal cortex, causing altered electrophysiological properties of their connections. These transgenic mice exhibit behavioral alterations related to psychiatric diseases, including cognitive deficits that can be reversed by treatment with N-acetylcysteine, which was also found to be effective in human patients. Here, we show that G72 transgenic mice have larger excitatory synapses with an increased amount of N-methyl-d-aspartate (NMDA) receptors in the molecular layer of DG, compared with wild-type littermates. Furthermore, transgenic animals have lower number of dentate granule cells with a parallel, but an even stronger decrease in the number of excitatory synapses in the molecular layer. Importantly, we also show that treatment with N-acetylcysteine can effectively normalize all these changes in transgenic animals, resulting in a state similar to wild-type mice. Our results show that G72 transcripts induce robust alterations in the glutamatergic system at the synaptic level that can be rescued with N-acetylcysteine treatment
    corecore